A NEW CHARACTERIZATION
OF ATTACHMENT PREFERENCES

Technical Note 296

March 1983

By: Fernando C. N. Pereira, Computer Scientist

Artificial Intelligence Center
Computer Science and Technology Division

This paper will appear in Natural Language Processing,
Psycholinguistic, Computational, and Theoretical,
Cambridge University Press (1983).

"This research was partial supported by the Defense Advanced
Research Projects Agency under Contract N00039-80-

C-0575 with the Naval Electronic Systems Command.

The views and conclusions contained in this document

are those of the authors and should not be interpreted

as representative of the official policies, either

expressed or implied of the Defense Advanced Research
Projects Agency or the United States Government.

Approved for public release. Distribution unlimited.

® SRl ternational

333 Ravenswood Ave. » Menlo Park, CA 94025
International 14151 326-6200 o TWX: 910-373-2046 » Telex: 334-486

“‘.’"

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
MAR 1983 2. REPORT TYPE 00-03-1983 to 00-03-1983
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A New Char acterization of Attachment Preferences £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE 17
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

A New Characterization of Attachment Preferences!

Fernando C. N. Pereira
Artificial Intelligence Center
SR! International
March 1983

Abstract

Several authors have tried to model attachment preferences for structurally ambiguous
sentences, which cannot be disambiguated from semantic information. These models lack rigor
and have been widely criticized. By starting from a precise choice of parsing model, it is possible
to give 3 simple and rigorous description of Minimal Attachment and Right Association that

avoids some of the problems of other models.

1. Introduction

Kimball's parsing principles [8], Frazier and Fodor's Sausage Machine [5, 6], and Wanner's ATN
model [13] have tried to explain why certain readings of structurally ambiguous sentences are
preferred to others, in the absence of semantic information. The kinds of ambiguity under

discussion are exemplified by the following two sentences

(1) Tom said that Bill bad taken the clesning cut yesterday
(2) John bought the bock for Susan
For sentence (1), the reading in which *'yesterday Bill took the cleam'né out” is preferred to the
one in which “Tom spoke yesterday about Bill taking the cleaning out.” Kimball [8] introduced
the principle of Right Association (RA) to account for this kind of preferences. The basic idea of
the Right Association principle is that, in the absence of other information, phrases are attached

to a partial analysis as far right as possible.

For sentence (2), the reading in which “the book was bought for Susan” is preferred to the one

L research was partially supported by the Defense Advanced Research Projects Agency under
Contract NO0039-80-C-0575 with the Naval Electronic Systems Command. The views and conclusions
contained in this document are those of the author and should not be interpreted as representative of the
official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the
United States Government.

in which “John bought a book that had been beforehand destined for Susan."” To account for
this preference, Frazier and Fodor [5] introduced the principle of Minimal Attachment (MA),
which may be summarized as stating that, in the absence of other information, phrases are

attached so as to minimize the complexity of the analysis.

Much of the debate about t,.he formulation and interaction of such principles is caused by their
lack of precision and, at the same time, by their being too specific. I propose a simple, precise,
and general framework in which improved versions of Right Association and Minimal Attachment
can be formulated. It will turn out that the two principles correspond to two precise rules on how

to choose between alternative parsing actions in the parsing model.

Apart from the concrete results shown, this article has two further purposes. First, to show that
it 13 possible to describe principles such as RA and MA starting from very few assumptions about
grammar and parsing mechanisms. Second, that, by making all the assumptions clear, the

principles are much easier to formulate and to discuss.

From the material I present, one should not infer that I am proposing certain specific
mechanisms as models of human sentence processing. Rather, I am presenting a possible general

framework within which precise falsifiable models can be formulated.

Underlying the proposed framework is the assumption of a bottom-up parsing mechanism. This
is much less restrictive than it may appear from the literature. Kimball, and Frazier and Fodor,
discount purely bottom-up mechanisms on the basis that they are not ‘“‘predictive” enough. This
criticism is founded on the incorrect assumption that bottom-up parsers cannot take account of
left context, and in pérticular of top-down predictions, to narrow their choice of parsing actions.

Frazier and Fodor state that [5]
“...Since higher nodes cannot be entered until after all the words they dominate havé
been received, these nodes cannot be made use of for the ‘forwards’ prediction of words
or nodes within that portion of the lexical string.”

This assumes that the parser has no internal state and its only sources of information are the
partially built phrase marker and the input. Of course, this need not be so. For example, the LR

(“left-to-right scan, rightmost derivation™) context-free parsing theory [2), which we will discuss

in more detail in Section 3, provides a very powerful method to encode possible left contexts into
a finite set of parser states, even for ambiguous languages [1]. I am not suggesting that LR
parsing is a suitable model for people's performance. I am just pointing out that the world of
bottom-up parsers is much wider than is all too often assumed. I will come back to this point

later.

2. Shift-Reduce Parsing

The class of bottom-up parsers that I will use to demonstrate the proposals in this paper is the
" shift-reduce parsers, which are well understood in the theory of context-free parsing [2]. The shift-
reduce method is a general framework for bottom-up parsing, whick can in fact be used for
grammar formalisms other than context-free grammars, such as type-0 grammars [3] and definite-
clause grammars [10]. In the present discussion, however, it is enough to look at context-free

parsing.
Any shift-reduce method has two basic ingredients: a stack and an oracle.

The stack is a string of grammar symbols, which is empty when analysis starts and which
becomes empty again at the end of a successful analysis. The stack is only accessed at its right
end, called the top of the stack. The left end is the bottom. Symbols c:;n be appended or
pushed onto the top of the stack, and removed or popped from the top of the stack. A string is
said to match the top of the stack if it is a final segment of 'tlhe stack. The combination of a
current stack and a partially consumed input string is called a configuration or point. I will

write a stack with its top to the right of the page. Empty stacks or strings will be denoted by EI

A shift-reduce parser changes its configuration by doing moves. There are two kinds of moves:
a single shift move and, for eack grammar rule, a reduce move. The shift move consists in
reading the next terminal from the input, and pushing it onto the stack. A reduce move consists
in taking a grammar rule whose right-hand side matches the top of the stack, and substituting

the matched string on the stack by the left-hand side of the rule.

For example, given the grammar

(1) S — NP VP
(2) NP — Det N
(3) VP — VNP
(4) Det — ths
{(5) N — cat

(6) N — dog

(7) V — loves

and the input string
the cat loves the dpg

the table below shows a sequence of valid moves. The move at the end of each line is applied to

the configuration in that line to give the configuration on the next line.

Stack Remaining input Move

] the cat loves the dog shift

tha cat, loves the dog reducs by (4)
Det . ghift

Det cat loves the dog reduce by (5)
Det N . reduce by (2)
KP . shift

KP loves the dog reducs by (7)
NPV the dog shift,

NP V the dog reduce by (4)
NP V Det, . dog shift

NP ¥V Det dog 0 reduce by (6)
KP V Dot N . reducs by (2)
NP ¥ NP . rednce by (3)
NP VP . rednce by (1)
s

A shift-reduce parser s said to reach the success state (or succeed), after some sequence of
moves on some input, when the stack contains only the initial symbol of the grammar and the
input is exhausted. In the previous example, the sequence of moves given leads to the success
state. If some sequence of moves cannct lead to the success state and cannot be extended by

some new moves, it has blocked.

3. Oracles and Conflicts

A shift-reduce parser based only on the preceding definitions would, of course, be impractical,
because it would have no means of choosing moves that lead to success on a well formed input.
There are just too many possible moves for any sizeable grammar. That is the reason why we

need the previously mentioned oracle. An oracle examines the moves that are possible in a

configuration and forbids moves that it knows will only lead to blocking move sequences. It
allows all the other moves. Notice that an oracle is not allowed to forbid moves that may lead
to success. Therefore, all the analyses of a given string according to the given grammar

correspond to some sequence of allowed moves from the initial configuration.

If oracles were unrestricted, it would be trivial to provide good oracles (just explore all possible
move sequences until a successful one is found). Therefore, I will restrict oracles to finite-state
machines, and this is assumed from now on. Of course, the existence of suitable oracles is a

»

precondition for accepting shift-reduce parsing as a reasonable model. In general, this is a difficult

question, which requires substantial further research.

There are important classes of grammars for which good oracles ate possible. I call an oracle
exact when it allows, at most, one move in any configuration. The context-free languages which
can be parsed with exact oracles are called deterministic languages [2]. Clearly, deterministic
languages must be unambiguous, so they are too small a class of languages for our purposes.
Nevertheless, the methods developed for handling deterministic languages, suitably relaxed,® may
be useful to derive plausible oracles for natural-lang¥age analysis. In particular, the LR parser -
theory, because of its close connection with the general parsing method of Earley [4], is an
interesting candidate for investigation. I use LR theory to derive the example of an oracle in the

next section.

The connection between I_.R parsing and the Earley algorithm shows, in an instructive way, how
predictions and left context are incorporated in an oracle. The finite automaton that implements
the oracle in an LR parser has states corresponding to sets of partially applied rules — called
dotted rules or items — in the Earley parsing algorithm. A dotted rule is just a grammar rule
with a dot in the right-hand side separating the symbols to its left, which have been found, from
the symbols to its right, which are still needed for the rule to be applied. A state transition in
the LR automaton corresponds to moving the dot in the dotted rules for the old state over the

symbols that might be on the top of the stack after the parsing action, to get the dotted rules for

2Relaxativ:m might mean using the theory to produce an imperfect oracle and supplementing it with
preference rules (see below).

the new state.

The dotted rules in the Earley algorithm are generated by a combination of top-down
predictions and bottom-up reductions. All the dotted rules that are generated for a given input
are compatible with an analysis of some string that shares an initial segment with the input.
Therefore, the states in the LR oracle are finite encodings of sets of partial parse trees for initial
segments of the input. In the case of deterministic languages, this encoding can be exact, but, in
the case of ambiguous languages, the finite encoding will collapse incompatible partial parse trees
into a single state, thus making the oracle inexact. Furthermore, by restricting the number of
states, mofe incompatible partial analyses would be merged, giving a potential model for the

effects of limited memory (see Marcus’ theory of deterministic parsing [9]).

Given that any oracle for a natural-language grammar is, in general, going to allow more than
one move at each point, when the parser wants to make a move it will have to solve conflicta.
Two kinds of conflicts can occur: a shift-reduce conflict, in w"hich the shift move and some
reduce move are allowed at the same point, and a reduce-reduce conflict in which no shift but
several reduce moves are allowed at the same point. From these definitions, it follows that shift-
reduce and reduce-reduce conflicts are mutually exclusive. If a parser is to avoid backtracking or
parallel elaboration of analyses, it must resolve conflicts in some way. Of course, by doing so, it
may be excluding exactly those moves that lead to success. On the other hand, if backtracking is

allowed, conflict resolution may be used to specify an order in which moves are to be tried.

4. Example of an Oracle
To make the notion of an oracle more concrete, I will now give a simple example, consisting of

an inexact oracle for the grammar

(1) S— NPV
(2) NP - Det N
(3) NP — ProperN
4 V-~V
(5) Det — Art
(6) Det — NP ’s

As noted before, oracles are finite-state devices. The particular oracle presented here is a

nondeterministic finite automaton. At any configuration during an analysis, the oracle takes its
current state and the grammar symbol currently on top of the parser’s stack (or [J if the stack is
empty) and produces a set of pairs (parser move, oracle stack). From this set, th;: parser
chooses a pair which defines its next move and the next state of the oracle. This mapping can be

described by transitions of the form
state : top of stack = parser move, next state

where ‘: top of stack” is omitted if the trapsition applies for any symbol on the top of the

stack.

The example oracle is given by the following transitions, where A is the initial state:

A = shift, B
B : Art = reduce by (6), C
: ProperN = reduce by (3), D

B
C = ghift, E
¥ D = shift, F
t D = reduce by (4), G
E = reduce by (2), D
F : 'e = reduca by (6}, C
F : ¥V = shift, B
G = reduce by (1), success
In constructing this oracle,]| have used the methods outlined in Section 3. Each state
corresponds to a set of dotted rules, and state transitions correspond to shift or reduce moves
that advance the dot in the dotted rules in a state. More precisely, the states are the “LR(0) sets

of items” [2] for the grammar.

This oracle is exact but for a shift-reduce conflict in state D, from which there are the two
alternative transitions marked wi'th }. This conflict can be solved by adding lookahead to the
oracle, and, in fact, the grammar can be parsed deterministically with one symbol of lookahead. A
suitable exact oracle can be derived using a specialization of the LR techniques known as LALR(1)

parsing |1, 12].

1 will now give an example of the oracle's operation with the input sentence
The boy stole Mary's cat.

State Stack Kove Remaining input

A O shift the boy stole Mary's cat
B Art raduce by (5) boy stole Mary’'s cat
c Det shift boy stole Mary's cat
E Dst N reduce by (2) stole Mary's cat
tD NP ghift stole Mary's cat
F NPV shift Mary's cat
B NP V ProperN reduce by (3) 's cat
tD NP V NP shift 's cat
F NP VNP 's reduce by (4) cat
c NP V Det shift, cat
E NP V Det X reduce by (2) 0
D W VWP reduce by (4 0O
G NP VP reduce by (1) O
H S .

At the points in the analysis marked with f, the oracle allows a shift or a reduction by rule (4).
The parser has to choose between (or develop in parallel) those moves. In the example, shift
moves are preferred. This is the right choice for a nonblocking sequence of moves (I am here

behaving as an additional oracle.)

5. Preference
Precise versions of the Right Association and Minimal Attachment strategies ¢an now be
presented.

* RA corresponds to solving all shift-reduce conflicts in favor of shifting;

. & MA corresponds to soiving all reduce-reduce conflicts in favor of the reduce move that
pops most symbels from the stack3.

To see how these definitions work, I assume that the oracle will produce exactly the conflicts
that correspond to the intuitively perceived ambiguities in the examples. To avoid uninteresting
detail, I will also assume the context-free rules necessary to analyze the relevant part of each
example, and I will enter words in the stack as their lexical categories. The reader should not

assume that the particular rules chosen have any particular merit apart from reflecting

3What about several allowed productions popping the same amount? This means that there are several
rules with the same right-hand sides, undistinguishable by the oracle. Apart from terminal rules (tbose
with only terminals in the right-hand side) for homographs, such rule conflicts do not seem to occur in
natural-language grammars. In particular, if an X-bar grammar is Used, right-hand sides will at least differ
in their head words.

reasonably the intuitive structure of the examples?.

I will first discuss the following shift-reduce conflict:
(FF1-1) Tom said that Bill bad taken the cleaning out yesterday.

(1) § «— NP VP
(2) VP — V Sbar
(3) S — S Adv

(4) Sbar — that S

Stack: NP V that §

When the input has been read up to the “, after soine necessary reducﬁons that Have to be done
at this point (the oracle must see to that), the parser will have the choice of reducing by rule (4)
or of shifting the Adv ‘‘yesterday” onto the stack. The preference for shifting will lead to the

configuration
Tom gaid that Bill had taken the cleaning ocut yesterday.

Stack: NP V that § Adv
At this point, only rule (3) may be used, and the adverb is therefore attached to the lower S.

A reduce-reduce conflict occurs in (FF1-13)5:
(FF1-13) John bought the book for Susan.

(5) P — NP PP
(6) v¢ — V NP (FP)

Stack: NP V NP FP
At this point in the analysis, the parser has to reduce either by rule (5) (and then rule (8) without
the optional PP) or by rule (8) with the PP. The latter option consumes more from the stack, and

therefore is chosen, causing the PP to be attached to the VP node.

Rules (5) and (8) above are implicit both in Frazier and Fodor's and in Wanner’s analyses for

the sentence. Unfortunately, my view of MA is sensitive to the choice of grammar rules in the

41l the examples are taken from Frazier and Fodor [5, 6] and Wanner {13]. To simplify the references,
they will be numbered by (A-N), where A is FF1 for {5], FF2 for [6] and ATN for Wanner's article, and N
is the number within the article.

SA nonterminal in parenthesis is optional.

10

same way as Wanner's. I rule (5) was substituted by (5°)8
(5') NP — Det N PP*

the preference for shifting over reducing would cause the final PP to be attached to the NP7, of
course, my proposal still explains the data, but only together with certain grammar rules. And it
might be argued that rule (5°) is highly dubious, because it suggests that a NP node is only found
when all the PPs that modify it have been found. This runs against the intuition that, at each
stage through the string of PPs, one has a perfectly well formed NP, which is the situation

portrayed by rule (5).

The same problem would occur in Wanner's ATN, if he had used a right-recursive (or a loop)
network to attach the PPs, instead of a left-recursive network analogous to rule (5). But whereas
shift-reduce parsing has no problem with left-recursive constructions, the top-down regime
implicit in Wanner's proposal is inadequate for the NP part of his network. In a phrase with the

final analysis of Figure 1,

NP
A
P o...\
/\ \
P \ \
NN \
Det N FP ... FP

Figure 1: Left Recursive Analysis
the ATN will attach every intermediate NP node as if it were the top NP, before finding that
there are more PPs to include in the NP and that, therefore, the intermediate NP has been
wrongly attached. This is very unreasonable behavior for a parser that purports to model human

performance.

Wanner criticizes Frazier and Fodor's use of sentence length to explain the preferred reading of

-
f:.'le notation X denotes ary string of zero or more Xs,

7] am indebted to David Warren for pointing this out.

11

(FF1-15).

(FF1-15) Joe bought the book that I had been trying to obtain
for Susan. g

Like Wanner's, my proposals make that preference independent of sentence length.

(7) NP — NP Sbar/NP
(8) VP — Vto VP
(8) PP — Prep WP

(4a) Sbar/NP -+ Comp S/NP

(1a) S/NP — VP

(1b) S/NP — NP VP/NP -

(6a) VP/NP - V (FP)

(8a) VP/NP — V to VP/NP

Stack: PV NP Cup PVt V

The rules use X/Y nonterminals to represent “‘an X with a Y hole’. This is an approximation,
sufficient for the purposes of this paper, of Gazdar's [7] “‘derived category" description of relative
clauses. In (FF1-15), there is 2 noun phrase gap for the object of “obtain” in ‘“‘obtain—for

Susan", which must thus be ahalyzed as a VP/NP, a verb phrase missing a noun phrase.

In the given configuration, there is a shift-reduce conflict, where the parser may either reduce
by rule (6a) (without the optional PP} or shift the word “for”. After the shift, there is only one

possible sequence of moves, sketched below:

Stack Remaining input MHove

NP V NP Comp NP V to V Prep Susan shift

NP V NP Comp NP V to V Prep WP 0 reduce by (9)
NP VNP Camp NP V to V PP reduce by (Ea)
NP V NP Comp NP V to VP/NP Teduce by (8a)
NP V ¥P Comp NP VP/NP :

We see thus that the PP "‘for Susan” is attached to the lower VP, giving the preferred reading in
which it was for Susan that I was trying to obtain the book,” rather than the reading in which

“John bought for Susan the book I had been trying to obtain.”

Although Wanner's model can explain this example, it cannot, as noted in [6], explain the RA-

induced preference in

(FF2-27} Joe tock the bock that I had wanted to include iz my
birthday gift for Susan

The problem with Wanner's proposal is that his top-down model is forced to apply his preference

12

rules before the phrases being attached have been scanned. Wanner’s rule for enforcing MA, the
CAT-before-SEEK rule in which looking for a word takes precedence over looking for a complex
phrase, operates before the parser has seen what follows *‘a birthday gift." The original proposals
of Frazier and Fodor cannot explain (FF2-27) either, and s0 they are forced to go into a rather

complicated explanation of a new principle of ‘‘local assaciation.”

In contrast, (FF2-27) causes no problem to the present formulation. The preposition “for” is
reached with the following configuration
Stack: NP V NP Comp NP V to V Prep NP Input: for Susan
At this point, there will be a shift-reduce conflict between shifting ‘for” onto the stack or

reducing Prep NP to a PP. The shift move is preferred, leading to the following sequence of moves

|

Input Mova
Susan ghift

reduce by (9)
reduce by (5)
reduce by (9)
reduce by (6a)
reduce by (8a)
reduce by (1b)
reduce by (4a)
reduce by (7)
reduce by (6)
reduce by (1)
success

- e e
5585888
L]
933444
HEEE
KE]

&

CEEE L
3

FSEEEEEES
s

ELELELELE
C

RSN EER
%‘3‘344444444

This example shows that, in the shift-reduce model, conflicts between Minimal Attachment and
Right Association are automatically eliminated because the two principles operate necessarily at
different points in the analysis. This is a consequence of general properties of bottom-up parsers

that will be discussed in the next section.

Another case of reduce-reduce conflict happens in example (FF2-12). The initial segment given
there can be extended in two different ways that force different lexical category assignments for
“that.” The preferred reading seems to be the ome used in ‘““That silly old-fasl!ioned hat is
cheap”, in which the fragment is the initial segment of a noun phrase, in contrast with the
reading in “That silly old fashioned hats are cheap is well known,” for which “that" is a
complementizer. Frazier and Fodor argue that Wanner's CAT-before-SEEK principle for ATNs

cannot explain the preferred reading because the example does not involve a conflict between

13

looking for a word and looking for a phrase, but a conflict between two different phrase types,
which. could be called a SEEK-SEEK conflict in ATN terminology®. Choosing the largest

reduction again fits the data.
(FF2~12) That silly old-fashicned

(10) P — (Det) Adj* N
Stack: that Adj Adj (W)
Reducing by rule (10) with the optioral Det will pop the most from the stack, so that will be the
preferred move. | am assuming here that a word is only given a lexical cat.e.gory when 1t is needed
for a reduction, otherwise the choice between Det or Comp for “‘that” would have to be done

immediately after shifting ‘‘that’ onto the stack. Delaying the choice of lexical category seems

reasonable, and fits the general notion that bottom-up parsing avoids making decisions too early.

6. In Defence of Bottom-Up Parsers

The examples of the last section s‘how the crucial difference between top-down and bottom-up
models of sentence parsing. Although there is a superficial similarity between arc preferences in
an ATN and shift-reduce conflict resolution, the two mechanisms operate in entirely different
ways: whereas in the top-down ATN model preferences are exercised before the phrases to which
they apply are scanned, in the shift-reduce formulation preferences operate only when phrases
could be closed by a reduce move. Because of this, situations that appear as a conflict between
two preference principles in the ATN model do not arise in a shift-reduce parser: the conflict has

disappeared by the time the parser has parsed the relevant phrases.

I have also shown in the last section that two important preference principles are naturally
described as conflict-resolution rules in a very general bottom-up parsing framework?. The
effects of these conflict resolution rules are only indirectly dependent on the actual grammar used,

and, in fact, the rules I used are consistent with the phrase markers used in the discussion of the

SA SEEK action is the top-down ATIN countetrpart of a reduction in a bottom-up, shift-reduce, parser.

9The resolution of shift-reduce conflicts in favor of shifting is actually used wben parsing ambiguous
programming language constructs, such as dangling ‘else’ statements in Algollike languages, to achieve
the analysis users find most natural [1].

14

examples by Frazier and Fodor and Wanner.

As | have explained in Section 3, the criticism that bottom-up parsers have mo predictive
capabilities is unfounded. The predictive ability of a shift-reduce parser is embedied in its oracle,
which will take note of the left context in its internal finite-state network. This finite-state
network encodes that “after such and such phrases have been found, and given that the next few
words are such and such, we are building such and such phrase, and therefore such and such
shifts or reduces are required.” In fact, shift-reduce pa.r.sing as a model of performance might be
criticized not because it can predict too little, but because it can predict too much: the class of
languages that can be parsed bottom-up without ba.cktrackingw is strictly larger than the class of

languages parsable top-down without backtracking [2].

The fact that an oracle tries to encode, in a ﬁnite‘(a.nd necessarily small) number of states, an
infinity of situations means that there may be some loss of information. That is, when deep down
in the anﬂysis of some subphrase, the detail of the higher found or predicted nodes of the left
context may be lost. This is precisely the effect of limited memory that Frazier and Fodor try to

mode! in the Sausage Machine.

Shift-reduce parsers require more stack for deep right branching constructions than for deep left
branching ones. This has beem used by Kimball to discount them as useful in modeling
performance. However, his Argument depends crucially on what grammar rules are chosen,
whereas the arguments here are of a more general nature and less dependent on the grammar

used.

7. Conclusion

I have explained how it is possible to describe rigorously the attachment preferences of Right
Association and Minimal Attachment in' a way that seems to satisfy both Frazier and Fodor’s and
Wanner's requirements, and that clarifies the interaction between the two principles. [have

started from very limited assumptions that clearly distinguish between parsing strategy (the

1001' parallel elaboration.

15

oracle), grammar, and preferences. In contrast, Frazier and Fodor's SM mixes strategy and

preferences, and Wanner's ATN mixes preferences with grammar formulation.

My formulation of the principles, however, is not totally independent of the grammar rules.
This dependence on the grammar might be caused by the shift-reduce strategy making decisions
too early. It would be interesting to investigate extending the idea of delayed assignment of lexical
categories used in example (FF2-12) into a method for delaying certain reductions. A careful
discussion of the role of delayed reductions in handling lexical preferences in a shift-reduce
parsing model has been given by Shieber [11]. His model gives the correct predictions for some

cases in which the mechanisms presented here are too coarse.

Acknowledgments

I would like to thank the {ollowing people for their comments and advice: David Warren, Henry
Thompson, Stu Shieber, Lauri Karttunen, Janet Fodor, Jane Robinson and Barbara Grosz. In no
way do I want to suggest that they agree with all the contents of the paper, whose views (and

mistakes!) are my own.
References

[1] A.V. Aho ard S. C. Johnson, “LR Parsing,” Computing Surueys,.Vol. 6, No. 2, pp. 99-124 (1974).

(2] A.V. Abo and J. D. Ullman, The Theory of Parsing, Translation end Compiling, (Prentice-Hall,
Englewood Cliffs, New Jersey, 1972).

[3] P.Deussen, “A Unified Approach to the Generation and the Acception of Formal Languages,” Acte
Informatica, Vol. 8, pp. 377-390 (1978).

[4] J. Earley, “An Efficient Context-Free Parsing Algorithm,"” Communications of the ACM, Vol. 13,
No. 2, pp. 94-102 (1970).

[5] L. Frazier and J. D. Fodor, “The Sausage Machine: A New Two-Stage Parsing Model,” Cognition,
Vol. 6, pp. 201-325 (1978).

|6] J.D.Fodor and L. Frazier, “Is the Human Sentence Parsing Mechanism an ATN?,” Cognition, Vol.
8, pp. 417-459 (1980).

[7}] G. Gazdar, “Unbounded Dependencies and Coordinate Structure,” Linguistic Inguiry, Vol. 12, No. 2,
pp. 165-184 (1981).

16

[8] J. Kimball, “Seven Principles of Surface Structure Parsing in Natural Language,” Cognition, Vol. 2,
No. 1, pp. 15-47 (1973).

[5] M. Marcus, A Theory of Syntactic Recognition for Natural Language, (MIT Press, Cambridge,
Massachussets, 1980).

[10] F. C. N. Pereira and D. H. D. Warren, "Definite Clause Grammars for Language Analysis- a
Survey of the Formalism and a Comparison with Augmented Transition Networks," Artificial
Intelligence, Vol. 13, pp. 231-278 (1980).

[11] S. Shieber, A Method for Disambiguating Sentences. Forthcoming.
[12] S. Shieber, Shift-Reduce Scheduling and Syntactic Closure. Forthcoming.

[13] E. Wanner, “The ATN and the Sausage Machine: Which One Is Baloney?,” Cognition, Vol. 8, pp.
209-225 (1980).

